Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 11(2)2023 Feb 12.
Article in English | MEDLINE | ID: covidwho-2229668

ABSTRACT

One of the main mechanisms of inducing an antiviral response depends on 2'-5'-oligoadenylate synthetases (OAS), which sense double-stranded RNA in the cytoplasm and activate RNase L. Mutations leading to the loss of functional OAS1 and OAS2 genes have been identified as important modifiers of the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we performed comparative genomics to search for inactivating mutations of OAS genes in other species of mammals and to establish a model for the diversifying evolution of the OAS gene family. We found that a recombination of the OAS and OAS-like (OASL) loci has led to the loss of OAS2 in camelids, which also lack OAS3. Both paralogs of OASL and OAS3 are absent in Asian pangolins. An evolutionarily ancient OAS paralog, which we tentatively name OAS4, has been lost in pangolins, bats and humans. A previously unknown OAS gene, tentatively named OAS5, is present in Yangochiroptera, a suborder of bats. These differences in the OAS gene repertoire may affect innate immune responses to coronaviruses and other RNA viruses.

2.
Front Immunol ; 11: 939, 2020.
Article in English | MEDLINE | ID: covidwho-380929

ABSTRACT

Zoonotic infections are an imminent threat to human health. Pangolins were recently identified as carriers and intermediate hosts of coronaviruses. Previous research has shown that infection with coronaviruses activates an innate immune response upon sensing of viral RNA by interferon-induced with helicase C domain 1 (IFIH1), also known as MDA5. Here, we performed a comparative genomics study of RNA sensor genes in three species of pangolins. DDX58/RIG-I, a sensor of cytoplasmic viral RNA and toll-like receptors (TLR) 3, 7, and 8, which bind RNA in endosomes, are conserved in pangolins. By contrast, IFIH1 a sensor of intracellular double-stranded RNA, has been inactivated by mutations in pangolins. Likewise, Z-DNA-binding protein (ZBP1), which senses both Z-DNA and Z-RNA, has been lost during the evolution of pangolins. These results suggest that the innate immune response to viruses differs significantly between pangolins and other mammals, including humans. We put forward the hypothesis that loss of IFIH1 and ZBP1 provided an evolutionary advantage by reducing inflammation-induced damage to host tissues and thereby contributed to a switch from resistance to tolerance of viral infections in pangolins.


Subject(s)
Coronavirus Infections/immunology , Eutheria/virology , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/genetics , Animals , Coronavirus/immunology , DEAD Box Protein 58/genetics , Gene Deletion , Humans , Immunity, Innate/immunology , RNA, Viral/immunology , RNA-Binding Proteins/genetics , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL